Methionine regeneration and aminotransferases in Bacillus subtilis, Bacillus cereus, and Bacillus anthracis.

نویسندگان

  • Bradley J Berger
  • Shane English
  • Gene Chan
  • Marvin H Knodel
چکیده

The conversion of ketomethiobutyrate to methionine has been previously examined in a number of organisms, wherein the aminotransferases responsible for the reaction have been found to be members of the Ia subfamily (L. C. Berger, J. Wilson, P. Wood, and B. J. Berger, J. Bacteriol. 183:4421-4434, 2001). The genome of Bacillus subtilis has been found to contain no subfamily Ia aminotransferase sequences. Instead, the analogous enzymes in B. subtilis were found to be members of the If subfamily. These putative aspartate aminotransferases, the yugH, ywfG, ykrV, aspB, and patA gene products, have been cloned, expressed, and characterized for methionine regeneration activity. Only YkrV was able to convert ketomethiobutyrate to methionine, and it catalyzed the reaction only when glutamine was used as amino donor. In contrast, subcellular homogenates of B. subtilis and Bacillus cereus utilized leucine, isoleucine, valine, alanine, phenylalanine, and tyrosine as effective amino donors. The two putative branched-chain aminotransferase genes in B. subtilis, ybgE and ywaA, were also cloned, expressed, and characterized. Both gene products effectively transaminated branched-chain amino acids and ketoglutarate, but only YbgE converted ketomethiobutyrate to methionine. The amino donor preference for methionine regeneration by YbgE was found to be leucine, isoleucine, valine, phenylalanine, and tyrosine. The B. subtilis ybgE gene is a member of the family III of aminotransferases and falls in a subfamily designated here IIIa. Examination of B. cereus and Bacillus anthracis genome data found that there were no subfamily IIIa homologues in these organisms. In both B. cereus and B. anthracis, two putative branched-chain aminotransferases and two putative D-amino acid aminotransferases were discovered as members of subfamily IIIb. These four sequences were cloned from B. cereus, expressed, and characterized. Only the gene product from the sequence designated Bc-BCAT2 was found to convert ketomethiobutyrate to methionine, with an amino donor preference of leucine, isoleucine, valine, phenylalanine, and tyrosine. The B. anthracis homologue of Bc-BCAT2 was also cloned, expressed, and characterized and was found to be identical in activity. The aminooxy compound canaline was found to be an uncompetitive inhibitor of B. subtilis YbgE and also inhibited growth of B. subtilis and B. cereus in culture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transduction in Bacillus cereus and Bacillus anthracis.

A phage, designated CP-51, that carries out generalized transduction in Bacillus cereus and B. anthracis, has recently been isolated from soil. Transducing phages for members of the genus Bacillus have been described previously for B. subtilis and B. licheniformis (2-6). Those that have been best characterized are PBS-1 for B. subtilis (4) and SP-10 and SP-15 for both B. subtilis and B. licheni...

متن کامل

Criteria for the identification of Bacillus anthracis.

The identification of Bacillus anthracis involves its differentiation from other aerobic sporeformers, particularly Bacillus cereus. Smith et al. (1952), in a study of aerobic sporeforming bacteria, concluded that B. anthracis is a pathogenic variety of B. cereus. They also stated that strains of B. anthracis which had lost their virulence could not be differentiated from B. cereus. This appare...

متن کامل

A DNA microarray facilitates the diagnosis of Bacillus anthracis in environmental samples.

AIMS In order to improve the diagnosis of Bacillus anthracis in environmental samples, we established a DNA microarray based on the ArrayTube technology of Clondiag. METHODS AND RESULTS Total DNA of a bacterial colony is randomly biotinylated and hybridized to the array. The probes on the array target the virulence genes, the genomic marker gene rpoB, as well as the selective 16S rDNA sequenc...

متن کامل

Induction of natural competence in Bacillus cereus ATCC14579

Natural competence is the ability of certain microbes to take up exogenous DNA from the environment and integrate it in their genome. Competence development has been described for a variety of bacteria, but has so far not been shown to occur in Bacillus cereus. However, orthologues of most proteins involved in natural DNA uptake in Bacillus subtilis could be identified in B. cereus. Here, we re...

متن کامل

A randomly amplified polymorphic DNA marker specific for the Bacillus cereus group is diagnostic for Bacillus anthracis.

Aiming to develop a DNA marker specific for Bacillus anthracis and able to discriminate this species from Bacillus cereus, Bacillus thuringiensis, and Bacillus mycoides, we applied the randomly amplified polymorphic DNA (RAPD) fingerprinting technique to a collection of 101 strains of the genus Bacillus, including 61 strains of the B. cereus group. An 838-bp RAPD marker (SG-850) specific for B....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 185 8  شماره 

صفحات  -

تاریخ انتشار 2003